Making toy data Method 1: manual entry toy <- cbind(price=c(120, 240, 360, 480, 600), name=c('jack', 'rio', 'irma', 'tio', 'tess'), color =c('tomato', 'midnightblue', 'mintcream', 'lightcoral')) Method 2: Using the seq function of base R. df <- data.frame( individual=paste( "hallo ", seq(1,60), sep=""), value=sample( seq(10,100), 60, replace=T)) Method 3: Using the expand.grid function df <- expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50), sex = c("Male","Female"), country=c('nep','ind', 'sri')) Genrating summary tables # Using the latest df:tbl_summary(df)Output prompted on a default browser:Summarising an entire df (using descr package):Summarising selected vars: Basic dataframe queries # Inquiring the class attribute of an object (a dataframe in this case):class(df)# printing the number of rows and cols:dim(df)# print first 6 rows:head(df) Handling missing values # Let us create a df with some missing cells:col1<-seq(11,21); col2<-seq(23,30); col3<-seq(43,50)length(col1)<-10; length(col2)<-10; length(col3)<-9df <-cbind(col1,col2,col3)And inspect for missings:sum(is.na(df)) This correctly identifies the number of missing values as 3. We can either remove the na cells to get a complete df by the folllowing:df1<- na.omit(df)Or replace them by column mean using the zoo package:na.aggregate(df)or, to drop columns with all missing values:df <- df[,colSums(is.na(df))<nrow(df)] Changing letter case using the stringi package #creating some random namesfirst_name <- as.vector(randomStrings(n = 10, len = 5, digits = F))last_name <- as.vector(randomStrings(n = 10, len = 7, digits = F))# concatenating first and last namesnames=paste(first_name, last_name)#Converting to a dfnames <- as.data.frame(names)# the latter case is currently out of order which can be remedied using the str function that comes with the stringi package.The following options are available: # To propernames <- stri_trans_totitle(names) names# To lowernames <- stri_trans_tolower(names) names# To uppernames <- stri_trans_toupper(names) names Subsetting df <embed src=”https://infoart.ca/wp-content/uploads/2022/04/subset.pdf” type=”application/pdf” width=”900″ height=”940″></embed> Dummy coding Data types