Bishwajit Ghose

Course outline


Learning the best packages for data visualisation in R


Basic chart types for plotting distribution e.g. Shapiro-Wilk:

  • Histogram  (simple & overlayed)
  • Smoothed density (simple & overlayed)
  • QQ plot
  • Box Plots (jitters)


Categorical data

  • Bar Chart for one categorical variable 
  • Bar Chart for multiple categorical variables  
  • Clustered bars (Stacked)
  • Dumbbell chart
  • Pie chart 
  • Sankey chart
  • Spine Plot
  • Mosaic plot


Categorical and continuous vars

  • Age pyramid
  • Heatmap
  • Cleveland dot plot


Only continuous vars

  • Scatter chart
  • Bubble chart
  • Time-series plot


Hierarchical data

  • Dendrogram
  • Sunburst plot
  • Circular packing 


Plotting regression outcomes

  • Correlation plot
  • Forest plot
  • Margins plot
  • ROC plot


Spatial graphics 

  • ggmap 
  • rworlmap
  • Geographic Scatterplot 
  • Micromaps
  • Choropleth map


working with ggplot2

  • Basic use of the aesthetic components
  • Combining geoms and stats
  • Changing plot themes (regular and minimal)
  • using ggpubr
  • using ggthemes
  • Advanced color schemes with RColorBrewer
  • Saving with transparent backgrounds


Combining multiple charts (mfrow and mfcol)