Course outline
Learning the best packages for data visualisation in R
Basic chart types for plotting distribution e.g. Shapiro-Wilk:
- Histogram (simple & overlayed)
- Smoothed density (simple & overlayed)
- QQ plot
- Box Plots (jitters)
Categorical data
- Bar Chart for one categorical variable
- Bar Chart for multiple categorical variables
- Clustered bars (Stacked)
- Dumbbell chart
- Pie chart
- Sankey chart
- Spine Plot
- Mosaic plot
Categorical and continuous vars
- Age pyramid
- Heatmap
- Cleveland dot plot
Only continuous vars
- Scatter chart
- Bubble chart
- Time-series plot
Hierarchical data
- Dendrogram
- Sunburst plot
- Circular packing
Plotting regression outcomes
- Correlation plot
- Forest plot
- Margins plot
- ROC plot
Spatial graphics
- ggmap
- rworlmap
- Geographic Scatterplot
- Micromaps
- Choropleth map
working with ggplot2
- Basic use of the aesthetic components
- Combining geoms and stats
- Changing plot themes (regular and minimal)
- using ggpubr
- using ggthemes
- Advanced color schemes with RColorBrewer
- Saving with transparent backgrounds
Combining multiple charts (mfrow and mfcol)