# gapminder import plotly_express as px import pandas as pd pd.plotting.register_matplotlib_converters() import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns import numpy as np
# gapminderimportplotly_expressaspximportpandasaspdpd.plotting.register_matplotlib_converters()importmatplotlib.pyplotasplt%matplotlibinlineimportseabornassnsimportnumpyasnpfromgapminderimportgapmindergapminder.head()#scatterfig = px.scatter(gapminder,x="Income",y="Life Expectancy",size="Population",size_max=60,color="Region",hover_name="Country",facet_col="Income Level",color_discrete_sequence=["#FF69B4","#87CEFA","#FFFF00","#32CD32"],range_y=[50, 90],width=1000,labels={"Income": "Incomein$s", "LifeExpectancy": "LifeExpectancyinyears"},title="World Map for Health and Wealth (data from 2018)",opacity=1 )fig.layout.xaxis1.update(matches=None)fig.layout.xaxis2.update(matches=None)fig.layout.xaxis3.update(matches=None)fig.layout.xaxis4.update(matches=None)py.iplot(fig,sharing='public',filename='factfulness_bubble_chart_2018')p.head()
Recoding in R refers to the process of transforming or modifying the values of a variable. This can involve changing the values to different categories, recategorizing them, or assigning new values based on specific conditions.
#mutateprovincenamesdd=dd1%>%mutate(geo=case_when(grepl("Newfoundland and Labrador",geo) ~"Newfoundland and Labrador",grepl("Nova Scotia",geo) ~"Nova Scotia",grepl("Prince Edward Island",geo) ~"Prince Edward Island",grepl("New Brunswick",geo) ~"New Brunswick",grepl("Quebec",geo) ~"Quebec",grepl("Onta",geo) ~"Ontario",grepl("Manitoba",geo) ~"Manitoba",grepl("Saskatchewan",geo) ~"Saskatchewan",grepl("Alberta",geo) ~"Alberta",grepl("British Columbia",geo) ~"British Columbia",grepl("Canada",geo) ~"Canada",TRUE~"Other" )) %>%group_by(across(c(1:4))) %>%summarise(value=sum(value))